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A worm algorithm is proposed for the two-dimensional spin glasses. The method is based on a low-
temperature expansion of the partition function. The low-temperature configurations of the spin glass on square
lattice can be viewed as strings connecting pairs of frustrated plaquettes. The worm algorithm directly ma-
nipulates these strings. It is shown that the worm algorithm is efficient, particularly if free boundary conditions
are used. We obtain accurate low-temperature specific heat data consistent with a form c�
T−2exp�−2J / �kBT��, where T is temperature and J is coupling constant, for the two-dimensional ±J spin glass.
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I. INTRODUCTION

Spin glasses have been studied for many years from vari-
ous points of views �1�. However, the nature of low-
temperature phases is still not clarified. Much of the work on
spin glasses relies on computer simulations. Monte Carlo
simulation has been one of the main tools. The Metropolis
algorithm proposed more than half a century ago served well
for many of the simulational works, but for spin glasses, it is
hampered by extremely long relaxation times at low tem-
peratures. There have been a number of more efficient tech-
niques, noticeably the simulated tempering �2� and parallel
tempering �3�. In two dimensions, cluster algorithms �4–7�
exist which are quite efficient.

The idea of generating random walks of loops in Monte
Carlo simulation has a surprisingly long history �8�. The loop
algorithms for quantum systems �9� are examples. Recently,
several worm algorithms have been proposed �10,11� for the
ferromagnetic Ising and other models. Such algorithms have
the advantage that the Monte Carlo updates are purely local,
while their effects are global. The classical worm algorithms
based on high-temperature expansion variables such as
tanh�Jij /kBT� do not work for spin glasses as the weights
would be negative for the antiferromagnetic interactions. In
this paper, we propose a worm algorithm for the two-
dimensional spin glasses. Our starting point can be thought
of as a low-temperature expansion for the partition function.
Our algorithm is comparable if not more efficient than the
cluster algorithm �7�, replica Monte Carlo �5�, or replica ex-
change algorithms �3�. Moreover, large systems can be simu-
lated if we are only interested in one particular temperature.

In the following, we outline a base algorithm and then
show how to enhance it by multistep moves. We discuss the
efficiency of few variations of the algorithm. We report
simulation results for the low-temperature specific heat with
periodic and free boundary conditions.

II. WORM ALGORITHMS

The weight of a spin-glass configuration is proportional to
the Boltzmann factor exp���ij�Jij�i� j / �kBT��, where �i= ±1,
and the site i is on an L�L square lattice with periodic

boundary conditions. The summation is over the nearest
neighbor pairs. For simplicity, we consider the ±J spin glass
where Jij = +J or −J with equal probability, although the
method is not limited to this model. By multiplying the
weight by a configuration-independent constant, we can re-
write it in an equivalent form:

	
�ij�

wbij , �1�

where w=exp�−2K� ,K=J / �kBT�; the variable bij =
1
2 �1

−Jij�i� j /J� represents presence �1� or absence �0� of an un-
satisfied bond. The bonds live on the dual square lattice.
Note that the variables bij are not independent. They should
be set up in such a way that an even number of bonds are
incident on an unfrustrated plaquette, while an odd number
of bonds are incident on a frustrated plaquette. A ground
state is one such that all the frustrated plaquettes are paired
and connected by strings with minimum total length �12�. At
excited states, closed loops of strings can form.

The worm algorithm directly manipulates these strings.
The weight, Eq. �1�, can be sampled with a “worm” if we
extend the phase space to include a path of the worm, with a
moving head at location i, and a tail at a fixed location i0.
The weight is exactly the same as before, except that the
parity requirement for the head or tail is reversed. That is, a
frustrated plaquette at head or tail requires an even number
of bonds, and an unfrustrated plaquette requires an odd num-
ber of bonds. The movement of the worm must preserve the
constraint on the bonds. A valid configuration of the original
problem is formed when the worm traces out a closed loop.

The sites and bonds in the following refer to the dual
lattice. The base algorithm of the worm movement with a
periodic boundary condition is as follows:

�i� Pick a site i0 at random as the starting point. Set i
← i0.

�ii� Pick a nearest neighbor j with equal probability, and
move it there with probability w1−bij. If it is accepted, flip the
bond variable bij�0↔1� along the way, update i← j.

�iii� If i is at the same site as i0 and winding numbers are
even, one Monte Carlo loop is finished �exit and take statis-
tics�, else go to step �ii�.
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We define the winding numbers as the algebraic sum of dis-
placements ��r divided by the linear size L when the head
and tail meet. The requirement that the winding numbers
must be even is due to the constraints of the bonds on the
dual lattice and the spins on the original lattice. A one-to-two
mapping to spin configurations is possible and valid from a
bond configuration only if the worm winds the system an
even number of times in both directions. It is interesting to
note that if we disregard the winding number constraint, we
are effectively simulating an ensemble of periodic and anti-
periodic boundary conditions at the same time, from which
domain wall free energy can be calculated �11�. For free
boundary conditions, where the spins at the boundary have
fewer neighbors, the winding number constraints are not
needed. Because both the bond variables and spin variables
are available, any desired thermodynamic quantities, such as
spin-glass susceptibility, can be obtained. The algorithm is
nothing but a Metropolis sampling on the extended phase
space. It is ergodic, any state can be reached with nonzero
probability, except at zero temperature. We also note that the
difference between a ferromagnetic Ising model and a spin
glass is only at the initial configuration. In the case of the
two-dimensional �2D� ferromagnetic Ising model, because of
duality, the same bond configuration can also be interpreted
as a high-temperature expansion loop configuration at its
dual temperature. Thus the present algorithm is exactly a
dual algorithm of Ref. �10� for the 2D ferromagnetic Ising
model.

The basic algorithm can be systematically enhanced by
applying the N-fold way �13� or “absorbing Markov chain”
method �14�. Note that we are only interested in the configu-
ration when the worm forms a closed path, and do not care
about the �Monte Carlo� dynamics while the worm is making
its way to meet the tail. We can apply an n-step acceleration
if it is n steps away from the tail i0.

Consider a set A of states in state space, consisting of the
current state and a collection of neighborhood states of the
current state. For example, in our application, we can con-
sider all the states reachable from current state in n−1 steps
of moves or less. We calculate the probability, P�� 
��, of
exiting A to state � given that it is in state �. Let W��

AA be the
one-step transition matrix elements of the Markov chain for

states within the set A from � to �, and W��
AĀ for one-step

transition probability with ��A, but �� Ā, where Ā is the
complement of A. Then the escape probability is given by

P��
�� = �
k=0

�

��WAA�kWAĀ��� = ��I − WAA�−1WAĀ���, �2�

where I is an identity matrix. The total escape probability is
one, ��P�� 
��=1. Given the current state �, the state �

� Ā is sampled with the probability P�� 
��. The escape
probability can be calculated explicitly. Let the current state
be called 0, and its four neighbor states by one step move
1–4. A new state is uniquely specified by a path of the moves
defined by the base algorithm, given the current state. One-
step escape probability is P�0→��=d0W0� , �=1, 2, 3, 4.
d0=1/ �1−W00� is fixed by normalization. This is just the

original N-fold way of Bortz et al. �13�. For a two-step
move, from the current site 0 to an intermediate site a and
reaching �, the escape probability is P�0→a→��
=d0W0aWa� / �1−Waa� where d0 is again fixed by normaliza-
tion. Probabilities for three or more steps are slightly more
complicated, but can be worked out. In this work, we con-
sider n=0 �no acceleration�, and n=1–4 step accelerations.

At very low temperatures, it can take an exceedingly long
time to generate one loop. In this case, it is actually correct
to interrupt the simulation by setting a fixed upper limit to
the number of steps used for each loop. Those attempts that
exceed the upper limit will be treated as rejected moves.

We measure the performance of the algorithm by its cor-
relation times. The correlation times are defined through the
correlation functions of the overlapping spin-glass order pa-
rameter:

f�t� = � �Q�t + t��Q�t��� − �Q�t���2

�Q�t��2� − �Q�t���2 �
J

, �3�

where the angular brackets denote the average of Monte
Carlo loop moves t� and the outer square brackets mean the
average over the quenched random couplings Jij. The quan-
tity Q is the overlap of the spins of two independent configu-
rations,

Q = �
i

�i
1�i

2 . �4�

Figure 1 demonstrates the efficiency of the algorithm for
various sizes and inverse dimensionless temperature K
=J / �kBT�. The results are from linear fits of the form
ln f�t�=−t /�+c in a window �� ,3��. The correlation func-
tions are very close to a pure exponential with c�0. The top
part, Fig. 1�a�, shows correlation time � in units of loop
moves, the bottom part �b� shows the central processor unit
�CPU� times. It is useful to separate the effect of the intrinsic
dynamics defined by the base algorithm from the speedup
due to differences in detailed implementation. The correla-
tion time in Fig. 1�a� is independent which of the N-fold-way
is used since the N-fold-way preserves the dynamics. They
all give the same correlation time in units of number of loops
generated. The bottom part Fig. 1�b� gives the actual CPU
time t0 in microseconds for one loop generation divided by
the number of spins. This number is only slightly dependent
on system size L. The overall efficiency should be measured
by the product of the two. It is interesting to note that as K
increases, the correlation time � saturates and becomes K
independent. Unfortunately, the time it takes for generating
one loop increases exponentially. Comparing different ver-
sions of N-fold-way acceleration, we found that there is a big
improvement going from the base algorithm to one-step
N-fold-way. Further increasing the step size does not lead to
big improvements until very low temperatures. It is clear
that, at T=0, one step or two step N-fold-way will not be
ergodic, the system can be trapped in a configuration. How-
ever, if we allow for sufficiently long-ranged multistep at-
tempts, we can still make moves even at T=0.
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What is more remarkable is that a free boundary condition
will make the algorithm even more efficient. This is because
we can always start from the boundary, or “outside” the sys-
tem, and the worm will cut the system into pieces. The worm
has a much easier job terminating as there are order L more
possibilities to hit the boundary comparing to a single site.
Conceptually, we can view the system as a planar graph.
Various ways of exiting the system can be regarded as mov-
ing to the single dual site representing the outside. Figure 2
gives the correlation times measured in real CPU time, the
quantity �t0. The meaning of this quantity is the amount of
CPU time needed in order to decorrelate the system such that
the correlation function is reduced to about e−1. This is a fair
comparison between completely different algorithms, but the
results depend on the detail implementation of the computer
programs. From this plot, we see that the free boundary con-
dition case is about 20 times more efficient than periodic
boundary conditions. The correlation length 	 of the 2D ±J
spin glass diverges as exp�2K� �7,15,16�. If we define the
dynamical critical exponent z as �t0�	z, we have z�7.0 and
3.2, for the Metropolis single spin flip and the worm algo-
rithms, respectively.

Comparison with replica based algorithms is somewhat
difficult as the overlapping order parameter Q is no longer a
good indicator of the dynamics, and one has to keep in mind
that many systems are simulated in parallel. While the worm
algorithms give a nearly single exponential decay, the corre-
lation functions defined by Eq. �3� for the replica Monte

Carlo start with a very fast decay, followed by a long expo-
nential tail. In Fig. 2, we also present the correlation times,
determined by exponential fits for large times, for a version
of replica Monte Carlo. Each Monte Carlo step consists of
one single-spin flip and one replica Monte Carlo move at
different temperatures for two sets of systems, and one rep-
lica Monte Carlo step for systems at the same temperature
�5�. These data suggest that replica Monte Carlo is more
efficient at very low temperatures.

III. SPIN-GLASS SPECIFIC HEAT

We now turn to the specific heat of the spin glass at low
temperatures. In 1988, Wang and Swendsen found by their
replica Monte Carlo algorithm that the specific heat of the
2D ±J spin glass approaches zero according to c�
K2exp�−2K� �17�. Since the energy gap from the ground
states to the first excited states is 4J, we might expect that
the specific heat should go as exp�−4K�. Wang and Swend-
sen gave an argument in analogous to the 1D Ising model
with periodic boundary condition, where although the mini-
mum excitation is also 4J, the configuration appears in the
form of a pair of kinks, each one of them can move freely, so
only a single kink with energy 2J should be considered “el-
ementary.” Indeed, for the 1D Ising model, the specific heat
goes as exp�−2K� in the thermodynamic limit.

However, the above interpretation has been challenged in
Ref. �15� with a method of exact calculation of the partition
function and recently in Ref. �16� by Monte Carlo simula-
tion, but supported in Ref. �18�. Thus the problem is still
controversial.

The present algorithms are well suited to simulate spin
glasses at low temperatures, particularly the free boundary
condition version. However, as we can see from Fig. 2, the
worm algorithms still have difficulty in equilibrating the sys-
tem when coupling K
3. Therefore we have used a combi-

FIG. 1. �Color online� �a� Exponential relaxation times in units
of loop trials of the worm algorithm for system sizes L�L, where
L=8, 32, 128, and 512, vs dimensionless inverse temperature K
=J / �kBT�. For comparison, the result of single-spin-flip Metropolis
algorithm on L=128 is also plotted. �b� CPU time �� sec� per loop
trial per lattice site for a 32�32 lattice on a 2.4-GHz AMD Opteron
computer, without �0� or with n-step acceleration.

FIG. 2. �Color online� Correlation times �t0 measured in actual
CPU times for single-spin-flip, one-step N-fold-way worm algo-
rithm with periodic boundary condition and with a free boundary
condition, for L=128. The slopes a of the straight line fits to
exp�aK� are 14.0, 6.5, and 6.2, respectively. For comparison, the
results of replica Monte Carlo are also plotted as pluses.
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nation of several different algorithms. Each Monte Carlo step
consists of several worm loop moves, one sweep of Me-
tropolis single spin flip, replica Monte Carlo between sys-
tems at neighboring temperatures and at the same tempera-
ture. Three replicas for each temperature are used. With these
algorithms, we were able to equilibrate the system down to
K�6 for L=8 and 32, or K�4 for L=128.

In Fig. 3, we present the reduced specific heat cK−2 vs K.
The asymptotic slopes for large K should resolve the issue of

2J vs 4J controversy. As can be seen from the figure, with
periodic boundary conditions, the specific heat eventually
settles to exp�−4K� because of the gap of excitations. How-
ever, as L increases, the crossover to a fast decay appears at
a larger and larger value of K. According to Ref. �18�, the
crossover length scale is l�exp�K�. This “finite-size-effect”
length scale appears different from the correlation length 	,
which goes as exp�2K�. For size L=128, we are quite close
to the thermodynamic limit, and the crossover is not ob-
served up to K=4. On the other hand, the free boundary
condition results have a rather different finite-size depen-
dence. We see that the asymptotic form of exp�−2K� is ap-
proached much faster in this case, at least for the small sizes.
Of course, since the energy gap with free boundary condi-
tions is 2J, the final form must be exp�−2K� for finite sizes.
The slopes of the free boundary condition results for large
systems are not monotonic with K. They increase from −3 to
about −2, but overshoot �to something like −1.8�, and then
come down eventually to the −2.

IV. CONCLUSION

In summary, we have shown numerically that the low-
temperature specific heat goes like K2exp�−2K� in the ther-
modynamic limit. Our calculations support the original argu-
ment of Wang and Swendsen regarding the asymptotic form
of heat capacity for 2D ±J spin glass. We demonstrate these
results with an efficient worm algorithm. The worm algo-
rithm presented here should be applicable to any model de-
fined on a �planar� graph where the concept of dual graph
can be defined. It does not seem possible for 3D lattices,
since these lattices are not planar in the graph-theoretic
sense. It is also interesting to study the clusters generated in
the worm algorithms and to relate them to other quantities.
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